import c<a href="https://www.knrjk.com/tag/1479" target="_blank">v</a>2 as cvimport matplotlib.pyplot as plt# 统一图片路径img_url = './image/horse.jpg'# Sober边缘检测# 1读取图像img = cv.imread(img_url, 0)# 2计算Sobel卷积结果x = cv.Sobel(img, cv.CV_16S, 1, 0)y = cv.Sobel(img, cv.CV_16S, 0, 1)# 3将数据进行转换Scale_abs<a href="https://www.knrjk.com/tag/1481" target="_blank">X</a> = cv.convertScaleAbs(x) # convert转换scale缩放Scale_absY = cv.convertScaleAbs(y)# 4结果合成result = cv.addWeighted(Scale_absX, 0.5, Scale_absY, 0.5, 0)# 5图像显示plt.rc("font", family='Microsoft YaHei')plt.figure(figsize=(10, 8), dpi=100)plt.subplot(121), plt.imshow(img, cmap=plt.cm.gray), plt.title('原图')plt.xticks([]), plt.yticks([])plt.subplot(122), plt.imshow(result, cmap=plt.cm.gray), plt.title('Sobel滤波后结果')plt.xticks([]), plt.yticks([])plt.show()# Scharr边缘检测# 1读取图像img = cv.imread(img_url, 0)# 2计算Sobe1卷积结果x = cv.Sobel(img, cv.CV_16S, 1, 0, ksize=-1)y = cv.Sobel(img, cv.CV_16S, 0, 1, ksize=-1)# 3将数据进行转换Scale_absx = cv.convertScaleAbs(x) # convert转换scale缩放Scale_absY = cv.convertScaleAbs(y)# 4结果合成result = cv.addWeighted(Scale_absX, 0.5, Scale_absY, 0.5, 0)# 5图像显示plt.figure(figsize=(10, 8), dpi=100)plt.subplot(121), plt.imshow(img, cmap=plt.cm.gray), plt.title('原图')plt.xticks([]), plt.yticks([])plt.subplot(122), plt.imshow(result, cmap=plt.cm.gray), plt.title('Scharri滤波后结果')plt.xticks([]), plt.yticks([])plt.show()# Laplacian边缘检测# 1读取图像img = cv.imread(img_url, 0)# 2 laplacian转换result = cv.Laplacian(img, cv.CV_16S)Scale_abs = cv.convertScaleAbs(result)# 3图像展示plt.figure(figsize=(10, 8), dpi=100)plt.subplot(121), plt.imshow(img, cmap=plt.cm.gray), plt.title('原图')plt.xticks([]), plt.yticks([])plt.subplot(122), plt.imshow(Scale_abs, cmap=plt.cm.gray), plt.title('Laplacian检测结果')plt.xticks([]), plt.yticks([])plt.show()# Canny边缘检测# 1图像读取img = cv.imread(img_url, 0)# 2 Cannyi边缘检测lowThreshold = 0max_lowThreshold = 100canny = cv.Canny(img, lowThreshold, max_lowThreshold)# 3图像展示plt.figure(figsize=(10, 8), dpi=100)plt.subplot(121), plt.imshow(img, cmap=plt.cm.gray), plt.title('原图')plt.xticks([]), plt.yticks([])plt.subplot(122), plt.imshow(canny, cmap=plt.cm.gray), plt.title('Canny检测后结果')plt.xticks(), plt.yticks()plt.show()import c<a href="https://www.knrjk.com/tag/1479" target="_blank">v</a>2 as cv import matplotlib.pyplot as plt # 统一图片路径 img_url = './image/horse.jpg' # Sober边缘检测 # 1读取图像 img = cv.imread(img_url, 0) # 2计算Sobel卷积结果 x = cv.Sobel(img, cv.CV_16S, 1, 0) y = cv.Sobel(img, cv.CV_16S, 0, 1) # 3将数据进行转换 Scale_abs<a href="https://www.knrjk.com/tag/1481" target="_blank">X</a> = cv.convertScaleAbs(x) # convert转换scale缩放 Scale_absY = cv.convertScaleAbs(y) # 4结果合成 result = cv.addWeighted(Scale_absX, 0.5, Scale_absY, 0.5, 0) # 5图像显示 plt.rc("font", family='Microsoft YaHei') plt.figure(figsize=(10, 8), dpi=100) plt.subplot(121), plt.imshow(img, cmap=plt.cm.gray), plt.title('原图') plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(result, cmap=plt.cm.gray), plt.title('Sobel滤波后结果') plt.xticks([]), plt.yticks([]) plt.show() # Scharr边缘检测 # 1读取图像 img = cv.imread(img_url, 0) # 2计算Sobe1卷积结果 x = cv.Sobel(img, cv.CV_16S, 1, 0, ksize=-1) y = cv.Sobel(img, cv.CV_16S, 0, 1, ksize=-1) # 3将数据进行转换 Scale_absx = cv.convertScaleAbs(x) # convert转换scale缩放 Scale_absY = cv.convertScaleAbs(y) # 4结果合成 result = cv.addWeighted(Scale_absX, 0.5, Scale_absY, 0.5, 0) # 5图像显示 plt.figure(figsize=(10, 8), dpi=100) plt.subplot(121), plt.imshow(img, cmap=plt.cm.gray), plt.title('原图') plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(result, cmap=plt.cm.gray), plt.title('Scharri滤波后结果') plt.xticks([]), plt.yticks([]) plt.show() # Laplacian边缘检测 # 1读取图像 img = cv.imread(img_url, 0) # 2 laplacian转换 result = cv.Laplacian(img, cv.CV_16S) Scale_abs = cv.convertScaleAbs(result) # 3图像展示 plt.figure(figsize=(10, 8), dpi=100) plt.subplot(121), plt.imshow(img, cmap=plt.cm.gray), plt.title('原图') plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(Scale_abs, cmap=plt.cm.gray), plt.title('Laplacian检测结果') plt.xticks([]), plt.yticks([]) plt.show() # Canny边缘检测 # 1图像读取 img = cv.imread(img_url, 0) # 2 Cannyi边缘检测 lowThreshold = 0 max_lowThreshold = 100 canny = cv.Canny(img, lowThreshold, max_lowThreshold) # 3图像展示 plt.figure(figsize=(10, 8), dpi=100) plt.subplot(121), plt.imshow(img, cmap=plt.cm.gray), plt.title('原图') plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(canny, cmap=plt.cm.gray), plt.title('Canny检测后结果') plt.xticks(), plt.yticks() plt.show()import cv2 as cv import matplotlib.pyplot as plt # 统一图片路径 img_url = './image/horse.jpg' # Sober边缘检测 # 1读取图像 img = cv.imread(img_url, 0) # 2计算Sobel卷积结果 x = cv.Sobel(img, cv.CV_16S, 1, 0) y = cv.Sobel(img, cv.CV_16S, 0, 1) # 3将数据进行转换 Scale_absX = cv.convertScaleAbs(x) # convert转换scale缩放 Scale_absY = cv.convertScaleAbs(y) # 4结果合成 result = cv.addWeighted(Scale_absX, 0.5, Scale_absY, 0.5, 0) # 5图像显示 plt.rc("font", family='Microsoft YaHei') plt.figure(figsize=(10, 8), dpi=100) plt.subplot(121), plt.imshow(img, cmap=plt.cm.gray), plt.title('原图') plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(result, cmap=plt.cm.gray), plt.title('Sobel滤波后结果') plt.xticks([]), plt.yticks([]) plt.show() # Scharr边缘检测 # 1读取图像 img = cv.imread(img_url, 0) # 2计算Sobe1卷积结果 x = cv.Sobel(img, cv.CV_16S, 1, 0, ksize=-1) y = cv.Sobel(img, cv.CV_16S, 0, 1, ksize=-1) # 3将数据进行转换 Scale_absx = cv.convertScaleAbs(x) # convert转换scale缩放 Scale_absY = cv.convertScaleAbs(y) # 4结果合成 result = cv.addWeighted(Scale_absX, 0.5, Scale_absY, 0.5, 0) # 5图像显示 plt.figure(figsize=(10, 8), dpi=100) plt.subplot(121), plt.imshow(img, cmap=plt.cm.gray), plt.title('原图') plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(result, cmap=plt.cm.gray), plt.title('Scharri滤波后结果') plt.xticks([]), plt.yticks([]) plt.show() # Laplacian边缘检测 # 1读取图像 img = cv.imread(img_url, 0) # 2 laplacian转换 result = cv.Laplacian(img, cv.CV_16S) Scale_abs = cv.convertScaleAbs(result) # 3图像展示 plt.figure(figsize=(10, 8), dpi=100) plt.subplot(121), plt.imshow(img, cmap=plt.cm.gray), plt.title('原图') plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(Scale_abs, cmap=plt.cm.gray), plt.title('Laplacian检测结果') plt.xticks([]), plt.yticks([]) plt.show() # Canny边缘检测 # 1图像读取 img = cv.imread(img_url, 0) # 2 Cannyi边缘检测 lowThreshold = 0 max_lowThreshold = 100 canny = cv.Canny(img, lowThreshold, max_lowThreshold) # 3图像展示 plt.figure(figsize=(10, 8), dpi=100) plt.subplot(121), plt.imshow(img, cmap=plt.cm.gray), plt.title('原图') plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(canny, cmap=plt.cm.gray), plt.title('Canny检测后结果') plt.xticks(), plt.yticks() plt.show()




THE END