import c<a href="https://www.knrjk.com/tag/1479" target="_blank">v</a>2 as cvimport matplotlib.pyplot as plt# 1图像和模板读取img = cv.imread('./image/wulin.jpg')template = cv.imread('./image/man.jpg')h, w, I = template.shape# 2模板匹配# 2.1模板匹配res = cv.matchTemplate(img, template, cv.TM_CCORR)# 2.2返回图像中最匹配的位置,确定左上角的坐标,并将匹配位置绘制在图像上min_val, max_val, min_loc, max_loc = cv.minMaxLoc(res)# 使用平方差时最小值为最佳匹配位置top_left = min_loctop_left = max_locbottom_right = (top_left[0] + w, top_left[1] + h)cv.rectangle(img, top_left, bottom_right, (0, 255, 0), 2)# 3图像显示plt.rc("font", family='Microsoft YaHei')plt.imshow(img[:, :, ::-1])plt.title('匹配结果'), plt.xticks([]), plt.yticks([])plt.show()import c<a href="https://www.knrjk.com/tag/1479" target="_blank">v</a>2 as cv import matplotlib.pyplot as plt # 1图像和模板读取 img = cv.imread('./image/wulin.jpg') template = cv.imread('./image/man.jpg') h, w, I = template.shape # 2模板匹配 # 2.1模板匹配 res = cv.matchTemplate(img, template, cv.TM_CCORR) # 2.2返回图像中最匹配的位置,确定左上角的坐标,并将匹配位置绘制在图像上 min_val, max_val, min_loc, max_loc = cv.minMaxLoc(res) # 使用平方差时最小值为最佳匹配位置 top_left = min_loc top_left = max_loc bottom_right = (top_left[0] + w, top_left[1] + h) cv.rectangle(img, top_left, bottom_right, (0, 255, 0), 2) # 3图像显示 plt.rc("font", family='Microsoft YaHei') plt.imshow(img[:, :, ::-1]) plt.title('匹配结果'), plt.xticks([]), plt.yticks([]) plt.show()import cv2 as cv import matplotlib.pyplot as plt # 1图像和模板读取 img = cv.imread('./image/wulin.jpg') template = cv.imread('./image/man.jpg') h, w, I = template.shape # 2模板匹配 # 2.1模板匹配 res = cv.matchTemplate(img, template, cv.TM_CCORR) # 2.2返回图像中最匹配的位置,确定左上角的坐标,并将匹配位置绘制在图像上 min_val, max_val, min_loc, max_loc = cv.minMaxLoc(res) # 使用平方差时最小值为最佳匹配位置 top_left = min_loc top_left = max_loc bottom_right = (top_left[0] + w, top_left[1] + h) cv.rectangle(img, top_left, bottom_right, (0, 255, 0), 2) # 3图像显示 plt.rc("font", family='Microsoft YaHei') plt.imshow(img[:, :, ::-1]) plt.title('匹配结果'), plt.xticks([]), plt.yticks([]) plt.show()

THE END