import c<a href="https://www.knrjk.com/tag/1479" target="_blank">v</a>2 as cvimport matplotlib.pyplot as pltimport numpy as np# 1读取图像,并转换成灰度图像img = cv.imread('./image/chess.jpg')gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)# 2角点检测# 2.1输入图像必须是float32gray = np.float32(gray)# 2.2最后一个参数在0.04到0.05之间dst = cv.cornerHarris(gray, 2, 3, 0.04)# 3设置阈值,将角点绘制出来,阈值根据图像进行选择img[dst > 0.001 * dst.max(0)] = [0, 0, 255]# 4图像显示plt.rc("font", family='Microsoft YaHei')plt.figure(figsize=(10, 8), dpi=100)plt.imshow(img[:, :, ::-1]), plt.title('Harris角点检测')plt.xticks([]), plt.yticks([])plt.show()import c<a href="https://www.knrjk.com/tag/1479" target="_blank">v</a>2 as cv import matplotlib.pyplot as plt import numpy as np # 1读取图像,并转换成灰度图像 img = cv.imread('./image/chess.jpg') gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # 2角点检测 # 2.1输入图像必须是float32 gray = np.float32(gray) # 2.2最后一个参数在0.04到0.05之间 dst = cv.cornerHarris(gray, 2, 3, 0.04) # 3设置阈值,将角点绘制出来,阈值根据图像进行选择 img[dst > 0.001 * dst.max(0)] = [0, 0, 255] # 4图像显示 plt.rc("font", family='Microsoft YaHei') plt.figure(figsize=(10, 8), dpi=100) plt.imshow(img[:, :, ::-1]), plt.title('Harris角点检测') plt.xticks([]), plt.yticks([]) plt.show()import cv2 as cv import matplotlib.pyplot as plt import numpy as np # 1读取图像,并转换成灰度图像 img = cv.imread('./image/chess.jpg') gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # 2角点检测 # 2.1输入图像必须是float32 gray = np.float32(gray) # 2.2最后一个参数在0.04到0.05之间 dst = cv.cornerHarris(gray, 2, 3, 0.04) # 3设置阈值,将角点绘制出来,阈值根据图像进行选择 img[dst > 0.001 * dst.max(0)] = [0, 0, 255] # 4图像显示 plt.rc("font", family='Microsoft YaHei') plt.figure(figsize=(10, 8), dpi=100) plt.imshow(img[:, :, ::-1]), plt.title('Harris角点检测') plt.xticks([]), plt.yticks([]) plt.show()

THE END